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ABSTRACT
The representation of a knowledge graph (KG) in a latent space re-
cently has attracted more and more attention. To this end, some
proposed models (e.g., TransE) embed entities and relations of a
KG into a “point” vector space by optimizing a global loss func-
tion which ensures the scores of positive triplets are higher than
negative ones. We notice that these models always regard all enti-
ties and relations in a same manner and ignore their (un)certainties.
In fact, different entities and relations may contain different cer-
tainties, which makes identical certainty insufficient for model-
ing. Therefore, this paper switches to density-based embedding
and propose KG2E for explicitly modeling the certainty of entities
and relations, which learn the representations of KGs in the space
of multi-dimensional Gaussian distributions. Each entity/relation is
represented by a Gaussian distribution, where the mean denotes its
position and the covariance (currently with diagonal covariance)
can properly represent its certainty. In addition, compared with
the symmetric measures used in point-based methods, we employ
the KL-divergence for scoring triplets, which is a natural asymme-
try function for effectively modeling multiple types of relations.
We have conducted extensive experiments on link prediction and
triplet classification with multiple benchmark datasets (WordNet
and Freebase). Our experimental results demonstrate that our method
can effectively model the (un)certainties of entities and relations in
a KG, and it significantly outperforms state-of-the-art methods (in-
cluding TransH and TransR).

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods—Knowledge Graph Representation
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1. INTRODUCTION
Knowledge representation and reasoning (KR&R) is a funda-

mental issue for artificial intelligence (AI) and knowledge man-
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agement (KM) [6]. To fulfill this aim, recent researchers devote
to knowledge graph (KG) which provides an effective represent
mechanism for knowledge and has become useful resources to sup-
port many intelligent applications, such as expert system [10], web
search [24][27] and question answering [31][2][11]. Commonly, a
KG, such as Freebase1[1], NELL2[7] or WordNet3[18], describes
knowledge as many relational data and represent them as inter-
linked subject-property-object (SPO) triplet facts. Usually, a triplet
fact (head entity, relation, tail entity) (denoted as (h, r, t)) consists
of two entities and a relation between them.

With the expansion of domains and the increase of data size,
representation of KGs is required to support generalization, robust
inference and other desirable functionalities [23]. However, tradi-
tional representations of KGs are based on a (hard) symbolic logic
representation framework, which heavily rely on the learned logic
inference rules for knowledge reasoning [15][29]. Thus, they lack
certain ability for supporting numerical computation in continuous
spaces, and cannot be effectively extended to large-scale KGs, such
as Freebase. To address this problem, a new approach based on rep-
resentation learning was recently proposed by attempting to embed
a KG into a low-dimensional continuous vector space that preserves
certain properties of the original graph [19][13][5]. The represen-
tations in (soft) latent space could act as a supplement for the sym-
bolic representations, which are learned by optimizing a global loss
function that involves all entities and relations in the entire graph.
As a result, each entity and relation encodes global KG informa-
tion through mutual effects and restrictions with the others. These
embedding representations can be used in many applications, for
example, verifying the correctness of one triplet fact, predicting the
relations between two entities and reasoning about the implications
among relations.

The promising methods (introduced in Section “Related Work”)
usually represent an entity as an n-dimensional vector h (or t) and
regard it as a “point” in low-dimensional spaces. A relation in KGs
is represented as an operation between two “points” (e.g., trans-
lation as a vector [4], linear transformation as a matrix [20], and
mixed operation [25]). In this way, a relation-dependent scoring
function fr(h, t), such as −||h + r− t||`1/2 , is defined to measure
the correctness of the fact (h, r, t) in the embedding space. The
embedding of a KG is learned to ensure that the score of a positive
triplet (e.g., (h, r, t)) is higher (or lower) than that of a correspond-
ing (mostly corrupted) negative triplet (e.g., (h′, r, t)).

Based on this paradigm, multiple models are proposed, such as
TransE [4], TransH [30], and TransR [16]. Although these mod-
els are proved to be effective in many scenarios, we notice that

1www.freebase.com/
2www.rtw.ml.cmu.edu/rtw/
3www.wordnet.princeton.edu/



different entities and relations often share the same margin when
separating a positive triplet and its corresponding negative triplet,
and the (un)certainties of entities and relations in KGs are totally
neglected. In fact, different entities and relations may contain dif-
ferent certainties, which makes identical certainty insufficient for
modeling. We consider that the (un)certainty of one entity/relation
represents the confidence for indicating its semantic when scoring
a triplet as context. For example, the certainty of relation spouse is
obviously larger than nationality when inferring a person (e.g., for
predicting Hillary Clinton, we may have more confidence to know
who is she when knowing her husband (spouse) is Bill Clinton than
knowing she was born on (nationality) USA.). Thus, we argue that
if we set a larger margin for separating (spouse) related positive
and negative triplets in the embedding model, we could obtain bet-
ter performances.

In this paper, we argue that the (un)certainties in KGs could be
influenced by multiple factors, including imbalance between the re-
lation’s head and tail, different number of the linked triplets for dif-
ferent relations and entities, and the ambiguous of the relations and
so on. For example, we hypothesize that an entity containing fewer
triplets has more uncertainty, and a relation linking more triplets
with more complex contexts has more uncertainty as well. We es-
pecially perform statistics on the entities and relations in Freebase4,
and Figure 1 shows the statistics of the person type in the people
domain. In Figure 1, the upper left indicates the diversity numbers
of triplets contained in 6 randomly sampled entities; the upper right
expresses the distribution of the ratios of entity numbers in the head
and tail parts with some typical relations; and the bottom shows the
distribution of triplet numbers with multiple relations. This fig-
ure illustrates that popular entities (e.g., the politician Hillary Clin-
ton) contain more relations and facts than unpopular ones (e.g., the
writer Murray Silverstein). Furthermore, different parts of relations
can contain very different numbers of entities, (such as the head
part and tail part in gender or nationality), and, high-frequency re-
lations (e.g., nationality) link more entity pairs than low-frequency
ones (e.g., religion). It indicates that the variations of uncertainty
with different entities and relations in a KG is vary enormously, and
it is desirable to consider this problem when learning the represen-
tations of a KG in a latent space.
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Figure 1: Various densities in a KG.
To address the aforementioned problem, this paper proposes a

new density-based embedding method, KG2E5, to model KGs and

4We use the dump data released on 2014-06-29.
5This name has two meanings. The first indicates mapping
Knowledge Graph to Embedding and the second indicates the rep-
resentation of a KG with Gaussian Embedding.

learn the representations in the space of multi-dimensional Gaus-
sian distributions. Inspired by [28], our approach models each
entity and relation with a multi-dimensional Gaussian distribution
N (µ,Σ) (currently with diagonal covariance for computing effi-
ciency). The mean vector of such multi-dimensional Gaussian dis-
tribution indicates its position, and the covariance matrix indicates
the corresponding (un)certainty which impacts on others, as shown
in Figure 2. Similar to previous methods, we also design a scor-
ing function fr(h, t) to measure the correctness of the triplet fact
(h, r, t) in the embedding space. In our scoring function, the dis-
tributions between H − T and R are similar when (h, r, t) holds,
where H, R and T indicate the Gaussian distributions of h, r and
t, respectively. Different from previous methods, which adopts
point-based scoring functions (dot products, cosine distance, `1/2

distances, etc.), we employ the KL-divergence between two prob-
ability distribution (the entity-pair distribution and the relation dis-
tribution) as the scoring function for all triples in KGs, which is
a naturally asymmetric and effective way for incorporating covari-
ance (denotes (un)certainties of entities and relations in KGs) into
the model. Moreover, we will employ another scoring function
based on the expected likelihood [12] to inspect the different per-
formances of asymmetric and symmetric measures.

Figure 2: Illustrated of the means and (diagonal) variances
of entities and relations in a Gaussian Embedding. The label
indicates its position. Relations attach with underlined labels.
Circles with the same color indicate a fact for Hillary Clinton.
In the representations, we might infer that Hillary Clinton was
born in (place_of_birth) Chicago, and is an (nationality) Ameri-
can.

We have conducted extensive experiments on link prediction and
triplet classification with multiple benchmark datasets such as Word-
Net and Freebase. The experimental results demonstrate the effec-
tiveness of our method. In particular, the proposed model can ef-
fectively address one-to-many, many-to-one and reflexive relations,
and significantly outperforms state-of-the-art methods (including
TransH [30] and TransR [16]) by as much as ∼30% when predict-
ing head (tail) entities in many-to-one (one-to-many) relations.

In summary, our main contributions are as follows:

• We propose a new method for learning the representations of
a KG. Different from previous methods, we specially con-
sider the (un)certainties of entities and relations the a KG.

• We model each entity/relation into a Gaussian distribution.
In particular, the mean vector denote its position and the co-
variance matrix (currently diagonal for computing efficiency)
are used to describe the (un)certainties of the entities and re-
lations. To our knowledge, the proposed method is the first
work which models KGs with “density-based” embedding,
in contrast to the existing “point-based” embedding meth-
ods.



• We use two methods (symmetric and asymmetric) to com-
pute the scores of triplets and find that the asymmetric method
(KL-divergence between two Gaussian distributions) is more
suitable for learning the representation of a KG with Gaus-
sian embedding.

• The experimental results demonstrate that our proposed method
can effectively model the (un)certainty of entities and rela-
tions in a KG, and it significantly outperforms state-of-the-
art methods in multiple related tasks.

2. RELATED WORK
Currently, the proposed methods mainly represent KGs in a low-

dimensional latent space. We briefly summarize the most relevant
work in Table 16. These methods embed entities into a vector space
and define a (mainly relation-dependent) scoring function to mea-
sure the compatibility of (h, r, t). The differences in these models
are the defined scoring functions fr(h, t).

We first highlight TransE [4] and its variants (TransH [30] and
TransR [16]) because they are simple and effective and achieve
the state-of-the-art performance in the majority of related tasks,
especially in KGs with thousands of relations. Inspired by the
word2vec [17], which finds the learning word vectors with a neural
network own linear relations, such as, vec(‘Paris’) - vec(‘France’)
≈ vec(‘Rome’) - vec(‘Italy’), that is, the difference in word vectors
is similar when they are attached to the same relation (e.g., capi-
tal_of, corresponding to the above example), TransE [4] represents
a relation as a vector r indicating the semantic translation from the
head entity h to the tail entity t, aiming to satisfy the equation t - h
≈ r when triplet (h, r, t) holds. TransE effectively handles one-to-
one relations but has issues in handling one-to-many, many-to-one
and many-to-many relations. For example, consider a one-to-many
relation r with multiple tail entities ti satisfying h + r ≈ ti for
∀i ∈ {1, ...,m}, (h, r, ti) ∈ KG, and it outputs invalid representa-
tions (t1 =...= tm) for distinguishing entities.

To address the aforementioned issues in TransE, TransH [30]
and TransR [16] are proposed to enable an entity to have distinct
representations when involved in different relations. For a triplet
(h, r, t), TransH first projects a head/tail entity vector (h/t) into a
relation-dependent hyper-plane by the following formulas: h⊥ =
h(I − wT

r wr) and t⊥ = t(I − wT
r wr), where wr is the vector

that spans the hyper-plane. It then measures the score using the
function ||h⊥ + r − t⊥||`1/2 in the hyper-plane of the relation r.
TransR is slightly different from TransH: it transforms a head/tail
entity vector into a relation-dependent sub-space with hr = hMr

and tr = tMr , where Mr represents the transform matrix from
entity space to the sub-space of relation r.

However, the TransH and TransR methods only partly address
the issues encountered by TransE. For example, consider TransR
in a one-to-many relation. It tends to learning tiMr = tjMr , for
∀i, j ∈ {1, ...,m}, (h, r, ti), and (h, r, tj) ∈ KG, and as a re-
sult, the different part between ti and tj only depends on the num-
ber of eigenvalues equal to zero7. In addition, the existing meth-
ods have difficulty learning valid representations for reflexive re-
lations because they use the same operation for head and tail en-
tities. For example, when triplets (h, r, t) and (t, r, h) both hold
6For convenient comparison, we use a different expression for
TransH.
7Decompose matrix Mr with singular value decomposition

(SVD): (ti − tj)Mr = (ti − tj)S

(
Σ 0
0 0

)
D = 0, ensuring

that (most) parts of ti and tj are equal because the eigenvalues of
the upper part of matrix (SΣD) cannot contain zero.

for a reflexive relation r, TransE, TransH and even TransR tend to
make (h ≈ t) and (r ≈ 0). Whereas h equals t may be a good
character for a reflexive relation, the same vector (0) for represents
all reflexive relations is not helpful for related tasks. Issues often
exist in the “point” based embedding models, in which “point”
vectors are typically compared by dot products, cosine-distance or
`1/2 norm, all of which provide for symmetric comparison between
instances. The proposed “density” based methods represent enti-
ties and relations by Gaussian distributions that explicitly modeling
the uncertainty of KGs and the asymmetry function scores (h, r, t)
and (t, r, h) using different parameters associated with not only the
head and tail entities but also its order.

To our knowledge, Linear Relational Embedding (LRE) [20] is
the pioneer work in learning representations of multi-relational data
that represent concepts as vectors and binary relations as transform
matrices. For concepts and their relations (i, r, j), LRE learns to
maximize the generatation probability from concept i and relation r
to concept j in proportion to exp(−||Rrvi−vj||2). Subsequently,
many approaches have followed this line. The unstructured model
(UM) [4] was proposed as the simplified version of TransE by as-
signing all translation vectors r = 0. However, it cannot distinguish
different relations. Structured embedding (SE) [5] adopts two dif-
ferent relation-specific matrices for head and tail entities but can-
not capture precious semantics of relations because the two matri-
ces are separated in optimization. The latent factor model (LFM)
[13] considers the second-order correlations between entities em-
bedding with a quadratic form. The single layer model (SLM)
and neural tensor network (NTN) were proposed by Socher [25].
The SLM is a naive baseline of the NTN and scores triplets using
relation-specific weights ur with a non-linear operation (tanh) for
triplet representation Wrhh + Wrtt + br . To date, the NTN is
the most expressive model based on multi-layer neural networks.
As shown in Table 1, the NTN extends the SLM by considering
the second-order correlations between entity embedding (similar to
LFM), feeding into a non-linear hidden layer, and then combining
with a linear output parameterized by the relation. However, the
NTN is not sufficiently simple to handle the large-scale KGs with
numerous relations.

In addition to these methods based on the ranking loss frame-
work, there is another line of related work that focuses on learning
the latent representations for KGs by tensor (matrix) decomposi-
tion and completion; it was inspired by the wide usage of decom-
position in recommended system [14] and relation extraction [32].
The collective matrix factorization model RESCAL [19] was pro-
posed to model KGs, which regarding a KG as a 3-model tensor
and learning the latent representations (entity as a vector and rela-
tion as a matrix) by reconstructing the original graph. RESCAL can
be used to cluster related entities and relations. Clustering concepts
have been widely used in modeling multi-relational data, such as
tensor factorization based on Bayesian clustering [26] and jointly
spectral clustering [8]. We compare our method with RESCAL in
our experiments. Vilnis and McCallum firstly proposed the Gaus-
sian Embedding models learning the representations of words [28],
which inspired this work. However, they mainly focus on the word
representations based on the contexts of text, this work focus on
the entity/relation representations in KGs based on the inter-linked
relationships between them.

3. REPRESENTING A KG WITH GAUSSIAN
EMBEDDING

A Gaussian distribution is capable of representing (un)certainty
explicitly. We represent KGs with Gaussian embedding. In this



Model Score function fr(h, t) # Parameters
LRE (2001) [20] exp(−||Wrh− t||2), Wr ∈ Rke×ke kene + krn

2
r

SE (2011) [5] ||Wrhh−Wrtt||`1/2 , Wrh,Wrt ∈ Rkr×ke kene + 2krnr

LTM (2012) [13] hTWrt, WR ∈ Rke×ke kene + krnr

UM (2012) [3] ||h− t||22 kene

TransE (2013) [4] ||h + r− t||`1/2 , r ∈ Rk
r ke(ne + nr)

SLM (2013) [25] uT
r g(Wrhh +Wrtt + br), ur, br ∈ Rs,Wrh,Wrt ∈ Rs×ke neke + nr(2skr + s)

NTN (2013) [25] uT
r g(hT Wrt +Wrhh +Wrtt + br),Wr ∈ Rke×ke×s neke + nr(sk2

e + 2ske + s)

TransH (2014) [30] ||h(I− wT
r wr) + r− t(I− wT

r wr)||`1/2 ,wr, r ∈ Rk
r kene + 2krnr

TransR (2015) [16] ||hMr + r− tMr||`1/2 , r ∈ Rk
r ,Mr ∈ Rkr×kr kene + (kr + k2

r)nr

KG2E_KL (this paper) 1
2
{tr(Σ−1

r (Σh + Σt)) + µTΣ−1
r µ− log det(Σh+Σt)

det(Σr)
}, µ = µh − µt − µr 2kene + 2krnr

KG2E_EL (this paper) 1
2
{µTΣ−1µ + log det Σ}, Σ = Σh + Σt + Σr 2kene + 2krnr

Table 1: Representative models for representing a KG in a latent space. We mainly compare the models’ scoring functions fr(h, t)
and their complexities (the numbers of parameters). ne and nr are the number of unique entities and relations, respectively. ke and
kr are the dimensions of entity and relation in the latent embedding space, h, t ∈ Rke . s is the number of slices of a tensor used in
NTN. I indicates the identity matrix used in TransH. g(x) is a non-linear function used in neural networks such as tanh.

section, we firstly introduce the framework for learning KG embed-
ding. We then present the proposed KG2E method and the learning
strategy.

First, we describe some common notations: h, r and t denote
the head entity, relation and tail entity for a triplet fact (h, r, t).
The mathematical symbols H, R and T denote the corresponding
Gaussian distributions: H ∼ N (µh,Σh) (similarly forR and T ).
The mean vector µ and covariance matrix Σ indicate the corre-
sponding embedding representations for the Gaussian distribution,
and E and R are the sets of entities and relations in KGs, respec-
tively.

3.1 Background
We follow the energy-based framework to learn the representa-

tions of a KG, as commonly used in learning word embedding [17]
and knowledge graph embedding [4] in a large scale corpus. The
core of this framework is an energy function Eθ(x) that scores the
input x, parameterized by θ. The goal of energy-based learning
is to learn the parameters of the energy function to ensure that the
score of an observed positive example is higher (or lower, depend-
ing on the definition) than those of negative (mainly constructed)
examples. This approach is often associated with a loss function
L that provides gradients of the parameters given the predictions
of the energy function according to some specific supervision. The
framework is also called ranking loss learning because the defined
loss function is based on the ranks of positive and negative samples.

In energy-based KG embedding models, the parameters θ cor-
respond to our learned representations, and the input x correspond
to observed true triplet facts in a KG. That is, the defined energy
function renders the score of a true fact higher (or lower) than that
of a false fact, parameterized with the representations θ.

3.2 Gaussian Embedding for a KG
We will describe the energy functions used in our proposed method

that measure the score of a triplet (h, r, t). Borrowing concepts
from translation-based methods [4][30][16], we consider the trans-
formation result from the head entity to the tail entity to be akin to
the relation in the positive triplet. We use the following simple for-
mula to express this transformation: H− T , which corresponds to
the probability distribution Pe ∼ N (µh − µt,Σh + Σt) (we hy-
pothesize that the head entity and tail entity are independent with
regard to some specific relation). As a result, combined with the

probability distribution of relation Pr ∼ N (µr,Σr), the most im-
portant step is to measure the similarity between Pe and Pr .

KL-divergence is a straightforward method of measuring the sim-
ilarity of two probability distributions and is naturally asymmetric.
Moreover, we use another similarity method based on the expected
likelihood or probability product kernel [28][12] to inspect the dif-
ference in performance between asymmetric and symmetric mea-
sures. We illustrate the two similarity measures in detail below.

3.2.1 Asymmetric similarity: KL-divergence
We optimize the following energy function based on the KL di-

vergence between the entity-transformed distribution and relation
distribution and denote it as KL.

E(h, r, t) = E(Pe,Pr) = DKL(Pe,Pr)

=

∫
x∈Rke

N (x;µr,Σr) log
N (x;µe,Σe)

N (x;µr,Σr)
dx

=
1

2

{
tr(Σ−1

r Σe) + (µr − µe)TΣ−1
r (µr − µe)

− log
det(Σe)

det(Σr)
− ke

}
(1)

In the upper formula, tr(Σ) and Σ−1 indicate the trace and inverse
of the covariance matrix, respectively. Considering the simplified
diagonal covariance, we can compute the trace and inverse of the
matrix simply and effectively.

The gradient of the log determinant is ∂ log detA
∂A

= A−1, the gra-

dient ∂xTA−1y
∂A

= −A−TxyTA−T , and the gradient ∂tr(XTA−1Y )
∂A

=

−(A−1Y XTA−1)T [21]. We can compute the gradients of this
energy function with respect to the mean vectors and covariance
matrix (currently acting as a vector) as follows:

∂E(h, r, t)

∂µr

=
∂E(h, r, t)

∂µt

= −∂E(h, r, t)

∂µh

= ∆′hrt (2)

∂E(h, r, t)

∂Σr
=

1

2
(Σ−1

r ΣeΣ
−1
r + ∆′hrt∆

′T
hrt + Σ−1

r )) (3)

∂E(h, r, t)

∂Σh
=
∂E(h, r, t)

∂Σt
=

1

2
(Σ−1

r −Σ−1
e ) (4)

where ∆′hrt = Σ−1
r (µr + µt − µh),Σe = Σh + Σt



We can define a symmetric similarity measure based on KL di-
vergence as follows:

E(h, r, t) =
1

2
(DKL(Pe,Pr) +DKL(Pr,Pe))

However, this measure lacks any gains in performance in terms of
link prediction and triplet classification, likely because the discrim-
inative ability of this formula is not distinct from the previous func-
tion for positive and negative triplets.

3.2.2 Symmetric similarity: expected likelihood
The dot product between the entity mean and relation mean is

not a suitable measure of similarity because it does not integrate the
covariance and cannot consider the diversity of uncertainty among
different entities/relations. Therefore, we take the inner product
between two distributions themselves to measure the similarity be-
tween Pe and Pr .

E(Pe,Pr) =

∫
x∈Rke

N (x;µe,Σe)N (x;µr,Σr)dx

= N (0;µe − µr,Σe + Σr)

(5)

For better computation and comparison, we use the logarithm of
the upper formula as the final energy function and denote it as EL.

E(h, r, t) = log E(Pe,Pr) = logN (0;µe − µr,Σe + Σr)

=
1

2

{
(µe − µr)T (Σe + Σr)−1(µe − µr)+

log det(Σe + Σr) + ke log(2π)

}
(6)

As in the previous case, we can compute the gradients for this en-
ergy function in a closed form.

∂E(h, r, t)

∂µh

= −∂E(h, r, t)

∂µr

= −∂E(h, r, t)

∂µt

= ∆′hrt (7)

∂E(h, r, t)

∂Σh
=
∂E(h, r, t)

∂Σr
=
∂E(h, r, t)

∂Σt
=

1

2
(∆′hrt∆

′T
hrt −Σ′−1)

(8)

where ∆′hrt = Σ′−1(µr + µt − µh),Σ′ = Σh + Σt + Σr

3.3 Learning
We define the following margin-based ranking loss for effective

discrimination between observed (positive) triplets and incorrect
(negative) triplets:

L =
∑

(h,r,t)∈Γ

∑
(h′,r′,t′)∈Γ′

(h,r,t)

[E(h, r, t) + γ − E(h′, r′, t′)]+

(9)
where [x]+ , max(0, x) aims to obtain the maximums between
0 and x, γ is the margin separating positive and negative triplets,
E(h, r, t) indicates the energy function formula 1 or 6 for scoring
triplets, Γ is the set of positive triplets observed in the KG, and
Γ′(h,r,t) denotes the set of negative triples corresponding to (h, r, t),
which will be introduced below.

Under the open world assumption (OWA), existing KGs contain
only correct triplets. The routine method for constructing a nega-
tive triplet (h′, r′, t′) is to replace the head or tail entity randomly,
such as sampling h′ for h and obtaining (h′, r, t). To obtain practi-
cal corrupted triplets, we follow [30] and assign different probabil-
ities for head/tail entity replacement. The main idea is to provide

a greater likelihood of replacing the side that will reduce the possi-
bility of generating false-negative instances. For example, with re-
gard to the relation gender, replacing tail is more likely to generate
true-negative triplets. Following the notation in previous methods
[30][16], we will denote the traditional sampling method as “unif”
and the new method [30] as “bern”. We also generate a negative
triplet by corrupting the relation and ensure that it is not a false-
negative triplet.

To avoid overfitting, we add some regularization while learn-
ing the Gaussian embedding. Considering the different geomet-
ric characteristics, we use different regularization strategies for the
mean and covariance. The following hard constraints are consid-
ered when we minimize the loss L:

∀` ∈ E ∪R, ||µ`||2 ≤ 1 (10)

∀` ∈ E ∪R, cminI ≤ Σ` ≤ cmaxI, cmin > 0 (11)

where the constraint 10 ensures that the means remain sufficiently
small and the constraint 11 guarantees that the covariance matrices
are positive definite and of appropriate size. We can use Σii ←
max(cmin,min(cmax,Σii)) to achieve these goals for diagonal
covariance.

Algorithm 1: THE LEARNING ALGORITHM OF KG2E
Input: An energy function E(h, r, t), training set

Γ = {(h, r, t)}, entity set E and relation setR, entity
and relation sharing embedding dimensions k, margin
γ, restriction values cmin and cmax for covariance,
learning rate α and maximum epochs n.

Output: All the Gaussian embeddings (mean vector and
covariance matrix) of e and r, where e ∈ E and r ∈
R.

1 foreach ` ∈ E ∪R do
2 `.mean← Uniform(−6√

k
, 6√

k
)

3 `.cov← Uniform(cmin, cmax)
4 regularize `.mean and `.cov with constraints 10 and 11

5 i← 0
6 while i+ + ≤ n do
7 Γbatch← sample(Γ, b) //sample a minibatch of size B

from Γ
8 Tbatch← ∅ //pairs of triplets for learning
9 foreach (h, r, t) ∈ Γbatch do

10 (h′, r, t′)← negSample((h, r, t)) //sampling negative
triplet with “unif” or “bern”

11 Tbatch← Tbatch ∪ ((h, r, t), (h′, r, t′))
12 (h, r′, t)← negSample((h, r, t)) //sampling negative

triplet by corrupting relation
13 Tbatch← Tbatch ∪ ((h, r, t), (h, r′, t))

14 Update Gaussian embeddings based on Equations 2, 3 and
4 (or 7 and 8, depending on E(h, r, t)) w.r.t. L =∑

((h,r,t),(h′,r′,t′))∈Tbatch
[E(h, r, t) + γ − E(h′, r′, t′)]+

15 regularize the means and covariances for each entity and
relation in Tbatch with constraints 10 and 11

We use Stochastic Gradient Descent (SGD)8 in small mini-batches
to iteratively update the Gaussian embeddings of entities and rela-
tions. In our model, we must first choose an energy function (EL or
KL) ( hereafter, we denote the corresponding models as KG2E_EL
8We also use AdaGrad [9] to optimize the parameters but found no
improvement.



and KG2E_KL, respectively.). The detailed learning procedure is
described in Algorithm 1. All Gaussian embeddings for entities
and relations are first initialized randomly following a uniform dis-
tribution. At each main iteration of the algorithm, we first sample
a batch of observed triplets, and construct corresponding negative
triplets based on the aforementioned sampling methods (“unif” or
“bern”). The parameters of Gaussian embedding are then updated
by taking a gradient step (using formulas 2, 3 and 4 or 7 and 8,
depending on the choice of energy function E(h, r, t)), with a con-
stant learning rate. For each step (including the initial embedding),
we ensure that all embeddings satisfy with the constraints 10 and
11.

4. EXPERIMENTS

4.1 Data Sets
In this work, we empirically study and evaluate related methods

for two tasks: link prediction [4] and triplet classification [25]. We
use datasets commonly used in previous methods, which are built
from two typical KGs: WordNet [18] and Freebase [1]. Word-
Net is a lexical database of the English language. In WordNet,
each entity represents a synset consisting of several words, and a
word can also belong to different synsets. Relationships between
synsets include hypernym, hyponym, meronym, holonym, troponym
and other lexical relations. We adopt two datasets from WordNet,
WN18, used in [4] for link prediction, and WN11, used in [25]
for triplet classification. Among them, WN18 contains 18 relations
and WN11 contains 11. Freebase is a large collaborative knowl-
edge graph of general world facts. For example, the triplet (Bill
Gates, place_of_birth, Seattle) indicates that the person with en-
tity Bill Gates was born in (place_of_birth) the location with entity
Seattle. We adopt two datasets from Freebase, FB13, used in [25]
for triplet classification, and FB15k, used in [4] for link predication
and triplet classification. Among them, FB13 contains 13 relations
and FB15k contains approximately 15,000 entities. The statistics
of these datasets are listed in Table 2.

Dataset #R #E #Triplet (Train/Valid/Test)
WN18 18 40,943 141,442 5,000 5,000
FB15k 1,345 14,951 483,142 50,000 59,071
WN11 11 38,696 112,581 2,609 10,544
FB13 13 75,043 316,232 5,908 23,733

Table 2: Datasets used in the experiments.

4.2 Qualitative Analysis
Before evaluation in each specific task and comparison with other

methods, we first examine the effectiveness and ability of our pro-
posed method to represent the uncertainty in a KG with a quali-
tative analysis. The following surveys and observations are based
on the representations of embeddings learned by KG2E and using
KL-divergence as a similarity measure in FB15k.

First, we want to know the effect of covariance in modeling the
uncertainty in a KG. Based on our ideas, an entity/relation with
a higher level of uncertainty has a larger covariance (correspond-
ing with determinant or trace). Considering the uncertainty of an
entity, we focus on the relationship between the (log) determinant
of covariance matrix and its density. The entity/relation density is
indicated by the number of corresponding triplets, and the entity
density is measured at different positions: head part, tail part or
entire set. As shown in Figure 3, there is a clear tendency for the
larger determinant of entity covariance to have fewer correspond-
ing triplets, regardless of position. Considering the uncertainty of

a relation, we measure the (log) determinant and trace of covari-
ance for 13 relations with /people/person as domain, as shown in
Table 3 (each row includes the following information with a rela-
tion: label, number of triplets,number of head entities, number of
tail entities, type9, (log) determinant and trace of covariance ma-
trix). We can draw the following conclusions: 1) the covariance
of Gaussian embedding can effectively model the (un)certainty of
a relation; 2) relations with complex semantic (e.g., many_to_one
(m-1) and many_to_many (m-n) relations) have larger uncertainty,
and 3) the more unbalanced the head and tail entities, the larger the
uncertainty. For example, the nationality relation has the largest
uncertainty, and the parents relation has the smallest uncertainty
among these 13 relations.
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Figure 3: The relationships between the density (linked triplet
number) of entity and the determinant of its corresponding co-
variance.

Relaion #Triplet #Head #Tail Type (log) det trace
nationality 4198 3755 100 m-1 -4.77 67.90
place_lived 3740 2441 784 m-n -23.02 53.24
profession 11636 4145 152 m-n -57.45 23.10

gender 3721 3721 2 m-1 -59.53 21.35
place_of_birth 2468 2468 685 m-1 -63.42 19.41

ethnicity 2030 1610 78 m-1 -69.95 15.00
major 260 217 60 m-1 -69.59 14.62
sibling 131 111 113 1-1 -72.98 14.29
religion 1086 963 45 m-1 -75.07 12.98
spouse 427 395 385 1-1 -77.77 12.24

children 77 69 71 1-1 -76.94 12.14
parents 83 74 76 1-1 -77.20 12.03

Table 3: The relationships between some relations and the
determinants and traces of their corresponding covariances,
sorted by the descending order of trace.

Next, we want to know the ability of Gaussian embedding to
learn valid entity/relation representations. Tables 4 and 5 give the
top 5 similarity entities/relations with regard to some sampling ex-
amples. The tables illustrate that the proposed method can learn a
valid representation for modeling KGs.

4.3 Link Prediction
Following the usage in [5][4], link prediction aims to predict

the missing h or t for a relation fact triplet(h, r, t). Instead of ob-
taining one best answer, this task puts more emphasis on ranking
a set of candidate entities from the KG. Similar to the setting in
[5][4][30][16], we conduct initial experiments using the datasets
WN18 and FB15k.

Evaluation protocol. We follow the same protocol as in TransE
[4] and its variants [30][16]: In the testing phrase, for each test
triplet (h, r, t), we replace the tail entity by all entities e in the

9We follow the definition in [4] and measure used in [30].



GNU/Linux ESPN
Unix Philips

Solaris Operating System CNN
Android AOL

Windows Vista Parlophone
Project management 64th Primetime Emmy Awards

University of Sydney Java (island)
University of Leeds Central Java

Seoul National University East Java
Commonwealth of Nations West Java

Princeton University Bandung
Carleton University Javanese people

Table 4: The top-5 similarity entities with regards to some ex-
amples.

people/person/nationality location/location/contains
location/*division/country */country/*divisions

location/hud_county_place/place location/location/containedby
*/educational/*institution location/*division/country

base/*/bibs_location/country biblioness/*location/state
music/artist/origin *area/capital

film/film/produced_by */organization/founders
film/film/directed_by */organizations_founded

film/*/executive_produced_by people/person/place_of_birth
film/film/written_by */location/people_born_here

film/*/performance/actor */employer*/person
film/film/story_by */award_winner/*/ceremony

Table 5: The top-5 similarity relations with regards to some ex-
amples, using a wildcard ∗ to reduce space occupation without
ambiguous expression.

KG and rank these entities in descending order of similarity scores,
measured by the energy function E(h, r, e). A similar process is
performed for the head entity measure by E(e, r, t). Based on these
entity ranking lists, we use two evaluation metrics by aggregation
over all the testing triplets: 1) the average rank of correct entities
(denoted as Mean Rank) and 2) the proportion of correct entities in
the top 10 ranked entities (denoted as Hits@10). A good method
should obtain lower Mean Rank or higher Hits@10. Considering
the fact that a corrupted triplet for (h, r, t) also exists in a KG, such
a prediction should also be deemed correct. However, the above
evaluations do not consider the issue and may underestimate the
metrics. To eliminate this factor, we remove those corrupted triplets
that already appeared in training, valid or testing sets before obtain-
ing the rank entity list of each testing triplet. We term the former
evaluation setting as “Raw” and the latter setting as “Filter”.

Implementation. Because the testing datasets are the same,
we directly compare our models with several baselines reported in
[4][30][16]. In learning KG2E, we select the learning rate α for
SGD among {0.001, 0.01, 0.05}, the margin γ among {1, 2, 4},
the dimensions of entity and relation sharing embedding k among
{20, 50, 100}, the batch size B among {20, 120, 1440, 2480}, and
the pair of restriction values cmin and cmax for covariance among
{(0.01, 1), (0.03, 3), (0.05, 5)}. The optimal configuration is de-
termined by the Hits@10 in the validation set. As the strategy of
constructing negative labels can greatly influence the evaluations,
we use different parameters for “unif” and “bern”. We also use dif-
ferent parameters for KG2E_KL and KG2E_EL. The default con-
figuration for all experiments is as follows: α = 0.001, γ = 1,
k = 50, B = 120, and (cmin, cmax)= (0.05, 5). Below, we list
only the non-default parameters. For KG2E_KL, under the “unif”
setting, the optimal configuration is as follows: α = 0.01, and
γ = 4 on WN18 and B = 1440 on FB15k. Under the “bern”
setting, the optimal configuration is as follows: α = 0.01, γ = 4,

B = 20, and (cmin,cmax)= (0.03,3) on WN18 and B = 2480 on
FB15k. For KG2E_EL,under the “unif” setting, the optimal config-
uration is as follows: α = 0.01, γ = 4, and B = 20 on WN18 and
γ = 2 on FB15k. Under the “bern” setting, the optimal configura-
tion is as follows: α = 0.01, γ = 4, B = 20, and (cmin,cmax)=
(0.03,3) on WN18 and B = 2480 on FB15k. For both datasets, we
traverse all the training triplets for 500 rounds.

Results. The results are reported in Table 6. On WN18, TransE,
TransH, TransR, KG2E and even the naive baseline unstructured
models outperform other approaches in terms of the Mean Rank
metric, but the majority of models are poor in terms of the Hits@10
metric. KG2E with the KL energy function outperforms other base-
line models, including TransE, TransH and TransR, in terms of the
Hits@10 metric but achieves a worse Mean Rank. One reason may
be that WN18 simply contains a small number of relations, and
thus, simple methods can judge the correct triplet but cannot rank
it in the top position. Another reason is that the Mean Rank is
easily reduced by an obstinate triplet with a low rank. On FB15k,
KG2E_KL consistently outperforms the other baseline models in
both Mean Rank and Hits@10. As the density diversity in FB15k is
greater than that in WN18, we hypothesize that the improvements
are because the uncertainty diversities in FB15k are greater than
those in WN18, and thus, the density-based embedding methods
can handle it better. From the observations, we can draw the follow-
ing conclusions: 1) Gaussian embedding can learn valid representa-
tions of KGs for link prediction. 2) KG2E is superior to other base-
line methods. 3) KG2E_KL performs better than KG2E_EL, which
indicates that the asymmetric energy function is more suitable for
learning the representation of KGs with Gaussian embedding. 4)
The “bern” sampling strategy works well for most approaches, es-
pecially on FB15k, which has many more relation types.

Table 7 shows the evaluation results with separated types of re-
lation properties. Following [4], we divide relations into four types:
one-to-one, one-to-many, many-to-one and many-to-many, for which
the proportions in FB15k (1345 relations in total) are 24%, 23%,
29% and 24%, respectively, based on the measure used in [30].
KG2E_KL and KG2E_EL significantly outperform TransE, TransH,
TransR and other baseline methods in one-to-one, one-to-many,
and many-to-one relations. For the difficult tasks of predicting tails
in one-to-many relations and predicting heads in many-to-one re-
lations, KG2E_KL obtains 29.3% and 29.9% improvements, re-
spectively. However, the proposed method presents only a slight
advantage for many-to-many relations, possibly because there are
various fine-grained types within a many-to-many relation that can-
not be effectively expressed by one Gaussian embedding. We be-
lieve CTransR, proposed by [16], is an effective way to handle this
issue by adopting a clustering strategy to divide entity pairs into
different sub-types. To better review the modeling improvement of
uncertainty of KG2E over TransE and its variants, Table 8 shows
the Hits@10 results on some typical one-to-many, many-to-one,
many-to-many and reflexive relations. We directly copy the ex-
perimental results of TransH from [30] for a fair comparison. We
can observe that the asymmetric similarity measure can effectively
handle reflexive relations.

4.4 Triplet Classification
This task seeks to judge whether a given triplet (h, r, t) is cor-

rect or not. That is, it is a binary classification task for fact triplets,
which was first explored in [25] and then widely used to evalu-
ate KGs embedding [30] [16]. In this task, we use three datasets:
WN11, FB13 and FB15k.

Evaluation protocol. We follow the same protocol as in NTN
[25]. The evaluation of binary classification requires negative triplets.



Data sets WN18 FB15K

Metric Mean Rank Hits@10 Mean Rank Hits@10
Raw Filter Raw Filter Raw Filter Raw Filter

Unstructured (Bordes et al. 2012) 315 304 35.3 38.2 1,074 979 4.5 6.3
RESCAL (Nickle, Tresp, and Kriegel 2011) 1,180 1,163 37.2 52.8 828 683 28.4 44.1

SE (Bordes et al. 2011) 1,011 985 68.5 80.5 273 162 28.8 39.8
SME (linear) (Bordes et al.2012) 545 533 65.1 74.1 274 154 30.7 40.8

SME (bilinear) (Bordes et al. 2012) 526 509 54.7 61.3 284 158 31.3 41.3
LFM (Jenatton et al. 2012) 469 456 71.4 81.6 283 164 26.0 33.1
TransE (Bordes et al. 2013) 263 251 75.4 89.2 243 125 34.9 47.1

TransH (unif) (Wang et al. 2014) 318 303 75.4 86.7 211 84 42.5 58.5
TransH (bern) (Wang et al. 2014) 401 388 73.0 82.3 212 87 45.7 64.4

TransR (unif) (Lin et al. 2015) 232 219 78.3 91.7 226 78 43.8 65.5
TransR (bern) (Lin et al. 2015) 238 225 79.8 92.0 198 77 48.2 68.7

CTransR (unif) (Lin et al. 2015) 243 230 78.9 92.3 233 82 44.0 66.3
CTransR (bern) (Lin et al. 2015) 231 218 79.4 92.3 199 75 48.4 70.2

KG2E_EL (unif) 381 369 74.8 87.8 217 94 38.5 58.6
KG2E_EL (bern) 385 373 74.1 85.0 219 112 39.4 56.7
KG2E_KL (unif) 362 348 80.5 93.2 183 69 47.5 71.5
KG2E_KL (bern) 342 331 80.2 92.8 174 59 48.9 74.0

Table 6: Experimental results on link prediction.

Tasks Prediction Head (Hits@10) Prediction Tail (Hits@10)
Relation Category 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N

Unstructured (Bordes et al. 2012) 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6
SE (Bordes et al. 2011) 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME (linear) (Bordes et al.2012) 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3
SME (bilinear) (Bordes et al. 2012) 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

TransE (Bordes et al. 2013) 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH (unif) (Wang et al. 2014) 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8
TransH (bern) (Wang et al. 2014) 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2

TransR (unif) (Lin et al. 2015) 76.9 77.9 38.1 66.9 76.2 38.4 76.2 69.1
TransR (bern) (Lin et al. 2015) 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1

CTransR (unif) (Lin et al. 2015) 78.6 77.8 36.4 68.0 77.4 37.8 78.0 70.3
CTransR (bern) (Lin et al. 2015) 81.5 89.0 34.7 71.2 80.8 38.6 90.1 73.8

KG2E_EL (unif) 49.2 87.9 55.2 53.1 47.8 54.9 88.4 56.2
KG2E_EL (bern) 51.8 89.4 47.9 51.6 52.0 43.6 89.3 55.0
KG2E_KL (unif) 92.2 93.7 67.4 69.1 91.2 69.7 93.6 71.2
KG2E_KL (bern) 92.3 94.6 66.0 69.6 92.6 67.9 94.4 73.4

Table 7: Experimental results on FB15k by mapping properties of relations. (%)

Relation
Hits@10 (TransH / KG2E_KL)
Predict Head Predict Tail

football_position/players∗ 100 / 100 22.2 / 100
production_company/films∗ 85.6 / 97.3 16.0 / 29.4
director/film∗ 89.6 / 93.4 80.2 / 85.8
disease/treatments† 66.6 / 66.6 100 / 100
person/place_of_birth† 37.5 / 34.1 87.6 / 84.6
film/production_companies† 21.0 / 44.2 87.8 / 97.8
field_of_study/students_majoring‡ 66.0 / 86.8 62.3 / 81.1
award_winner/awards_won‡ 87.5 / 88.4 86.6 / 89.2
sports_position/players‡ 100 / 100 86.2 / 100
person/sibling§ 63.2 / 89.5 36.8 / 94.7
person/spouse§ 35.2 / 77.8 42.6 / 85.2

Table 8: Hits@10 (Filter) of KG2E_KL and TransH on some
examples of one-to-many∗, many-to-one†, many-to-many‡, and
reflexive relations§.

WN11 and FB13 released by NTN [25] already contain negative
triplets, which are built by corrupting the corresponding positive
(observed) triplets. As FB15k has not released negative triplets in
previous works, we construct negative triplets following the same
procedure used in [25] for FB13. The setting for triplet classifi-
cation is very simple: for each triplet (h, r, t), if the dissimilarity
score obtained by the energy function E(h, r, t) is below a relation-
specific threshold δr , then the triplet will be classified as positive.
Otherwise, it will be classified as negative. The relation-specific

threshold δr is optimized by maximizing the classification accu-
racy on the validation set.

Implementation. Considering that the same datasets (negative
triplets) are used in WN11 and FB13, we directly compare our
models with the baseline methods reported in [16]. For evaluation
on FB15k, we use the code released by Lin10 [16] (running TransE,
TransH and TransR) and Socher11 [25] (running NTN). For TransE,
TransH and TransR, we select the learning rate α for SGD among
{0.001, 0.01, 0.05}, the margin γ among {0.5, 1, 2}, the dimen-
sions of entity and relation sharing embedding k among {20, 50,
100}, and the batch size B among {20, 120, 1440, 2480}. Other
parameters follow the default configuration in the shared codes. For
the NTN, we did not change the settings: dimension k = 100, and
the number of slices equals 3. The optimal configurations are as
follows: α = 0.001, γ = 1, and B = 4800 for TransE (bern);
α = 0.001, γ = 2, and B = 120 for TransE (unif); α = 0.001,
γ = 0.5, andB = 4800 for TransH (bern) α = 0.01, γ = 0.5, and
B = 4800 for TransH (unif); α = 0.001, γ = 1, and B = 4800
for TransR (bern); and α = 0.001, γ = 1, andB = 120 for TransR
(unif). The dimension k = 100 for all the above configurations.

In learning KG2E, we select the learning rate α for SGD among
{0.001, 0.01, 0.05}, the margin γ among {1, 1.5, 2}, the dimen-

10https://github.com/mrlyk423/relation_extraction
11www.socher.org



sions of entity and relation sharing embedding k among {20, 50,
100}, the bach size B among {20, 120, 1440, 2480}, and the pair
of restriction values cmin and cmax for covariance among {(0.01,
1), (0.03, 3), (0.05, 5)}. The optimal configuration is determined
by the classification accuracy in the validation set. For all three
datasets, we traverse all the training triplets for 1000 rounds. We
also use different parameters for KG2E_KL and KG2E_EL. The
default configuration for all experiments are as follows: α = 0.001,
γ = 1, k = 50, B = 120, and (cmin, cmax)= (0.05, 5). Below,
we list only the non-default parameters. For KG2E_KL, under the
“unif” setting, the optimal configuration is as follows: k = 20,
γ = 2, and B = 120 on WN11; k = 100, and B = 1440 on
FB13. Under the “bern” setting, the optimal configuration is as fol-
lows: k = 20, and γ = 2 on WN11 and k = 100, and B = 1440
on FB13. For KG2E_EL, under the “unif” setting, the optimal con-
figuration is as follows: k = 20, γ = 2, and B = 120 on WN11;
k = 100, and B = 120 on FB13 and γ = 1.5, on FB15k; Under
the “bern” setting, the optimal configuration is as follows: k = 20,
γ = 2, and B = 120 on WN11; k = 100 on FB13 and B = 2480
on FB15k.

Results. The accuracy of triplet classification on the three datasets
is shown in Table 9. On WN11, KG2E_KL and TransR outper-
form all the other models. The NTN, the powerful model with
the most parameters, outperforms the other approaches on FB13,
but it performs poorly on FB15k, which contains many more re-
lations. In contrast, on a more practical KG with large-scale re-
lations (such as Freebase), the proposed method KG2E_KL per-
forms much better than the other baseline models, and even the
KG2E_EL is also a competitive model. We can draw the following
conclusions from the observations: 1) KG2E_KL achieves supe-
rior performance compared to other baseline methods for a multi-
relational KG, which indicates that Gaussian embedding can ef-
fectively model the enormous diversity of uncertainty in a KG.
2) KG2E_KL performs better than KG2E_EL, which is consis-
tent with the results of link prediction. 3) The “bern” sampling
strategy outperforms the majority of the approaches ( including
TransE, TransH, TransR and our proposed models KG2E_EL and
KG2E_KG) on all three datasets.

We also compare with CTransR, another model proposed by Lin
[16] to handle many-to-many relations with entity-pairs clustering.
However, in the NTN [25], another set of results combined with
word embedding [17] is reported. There are different ways to im-
prove KG embedding between the aforementioned method and our
method, and for fairness, we have not compared their results.

As shown in [30] and [16], the training times of TransE, TransH
and TransR are approximately 5 minutes, 30 minutes and 3 hours,
respectively. The computational complexities of our proposed meth-
ods are lower than that of TransR but higher than those of both
TransE and TransH: KG2E_KL and KG2E_EL take approximately
80 and 75 minutes for training, respectively.

5. CONCLUSIONS
In this paper we propose KG2E, a new method for learning rep-

resentations of entities and relations in KGs with Gaussian embed-
ding. Each entity and relation is represented by a Gaussian dis-
tribution with a mean vector and a covariance matrix (currently
with diagonal covariance for computational efficiency), which aims
to model the uncertainty of entities and relations in a KG. The
(un)certainties vary considerably for different entities and relations:
for example, popular entities with fewer uncertainty, which contain
more relations and facts than unpopular ones, high-frequency rela-
tions with more uncertainty, which link more entity pairs than low
frequency ones, and, different parts of relations can contain a very

Data sets WN11 FB13 FB15k
SE (Bordes et al. 2011) 53.0 75.2 -

SME (bilinear) (Bordes et al.2012) 70.0 63.7 -
SLM (Socher et al. 2013) 69.9 85.3 -

LFM (Jenatton et al. 2012) 73.8 84.3 -
NTN (Socher et al. 2013) 70.4 87.1 68.2

TransE (unif) (Bordes et al. 2013) 75.9 70.9 79.2
TransE (bern) (Bordes et al. 2013) 75.9 81.5 81.4
TransH (unif) (Wang et al. 2014) 77.7 76.5 85.4
TransH (bern) (Wang et al. 2014) 78.8 83.3 85.8

TransR (unif) (Lin et al. 2015) 85.5 74.7 83.7
TransR (bern) (Lin et al. 2015) 85.9 82.5 86.5

CTransR (bern) (Lin et al. 2015) 85.7 - 87.4
KG2E_EL (unif) 73.8 76.3 83.9
KG2E_EL (bern) 75.2 85.2 84.9
KG2E_KL (unif) 83.6 76.4 88.6
KG2E_KL (bern) 85.4 85.3 89.3

Table 9: Experimental results of Triplet Classification (%).

different numbers of entities that sharpen the uncertainties of rela-
tions. We use two energy functions (symmetric and asymmetric)
to compute the score of a triplet fact. Extensive experiments on
link prediction and triplet classification with multiple benchmark
datasets (including WordNet and Freebase) demonstrate that the
proposed method significantly outperforms state-of-the-art meth-
ods.

In the future, we plan to address the following limitations that
still exist in the methods:

• Existing methods do not explicitly consider the relationships
between relations. For example, triplets with the relations
children and parents (normally, (X, children, Y) and (Y, par-
ents, X) are mutual implications) affect and restrict with each
other. We will explore mixing logical rules into the Gaussian
embedding. The same concepts have been successfully used
in relation extraction [22].

• Various KGs can supply and verify with each other. For ex-
ample, NELL contains more machine learning related rela-
tions (e.g., mlauthor) than Freebase but fewer person related
relations (e.g., spouse), and NELL may extract a false triplet
fact (e.g., (Erma Bombeck, was born in, Dayton)) with high
confidence that can be rectified by Freebase. We will explore
the fusion of multiple KGs, learning the representations in a
joint model with or without entity linking.

• Compared with other types of relations, KG2E does not sig-
nificantly outperform previous methods in many-to-many re-
lations, possibly because current entity embedding does not
consider the types of entity. For example, even the relation
contains incorporates many fine-grained relations, such as,
country_contain_university, country_contain_city and
continent_contain_country. We can ascertain the semantics
of relations for the head entity of type country and the tail
entity of type city.
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